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Learning to target interventions

We have some intervention — a discount, an ad campaign, or
a piece of content to recommend

How should we decide who to target with it?

We will use randomized experiments to generate data about
for whom it might work.

A policy and its value:

π : X → ∆A

E[Yi ] := µ(xi , π(xi ))

V (π) :=
1

n

∑

i

E[Yi ]
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Long-term outcomes

What makes long-term outcomes different?

When primary outcome of interest is short-term, a policy can
be directly optimized on it before treating the next batch.

But long-term outcomes are not observed in the short-term.
• Just wait. But can’t learn or take actions in between.
• Optimize a short-term proxy instead. But it might be myopic

and not well aligned with the long-term outcome.
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Empirical context: The Boston Globe

Boston Globe is the largest newspaper in New England.

$6.93/week billed every 4 weeks for a total of $27.72.

How can we retain subscribers and maximize their long-term
revenue by targeting discounts?

Two rounds of experiments on all digital subscribers.

What we observe for each customer:
• demographics (e.g., zip code)
• account activities (e.g., billing address change, payment

decline, credit card expiration date, complaints)
• content consumption (what articles and when)
• cancellation and revenue
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Our approach

Use statistical surrogacy to impute the missing long-term
outcomes and optimize the policy on imputed outcomes.

Implement the optimal policy via bootstrapped Thompson
sampling to account for non-stationarity.1

Application: Who should I give discount to, and how much, to
maximize total subscription revenue over the next 3 years?

1Add randomness in every round of targeting to never stop exploring.
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Framework

Imputation of long-term outcome: Ỹ in place of Y .

Policy learning:

π∗ = argmaxπ∈ΠṼ (π)

Policy implementation: adapt to potential non-stationarity by
continuing to experiment π∗t
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Imputation of long-term outcome

Statistical surrogate: a short-term proxy variable S that if
conditioned on, makes long-term outcome Y independent of
treatment A (Prentice 1989).

One causal model where this is satisfied: S fully mediates the
treatment effect from A to Y .

Perhaps more plausible if S is detailed (potentially
high-dimensional). Can find a set of surrogates S that jointly
mediate the treatment effect and learn a surrogate index
(Athey et al., 2020).
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Imputation of long-term outcome

Suppose we have two datasets: experimental (e) and
historical/observational (h).

In experimental data we observe (xi , ai , si ).

In historical data we observe (xj , sj , yj).

The long-term outcome in the experimental data can be
imputed as:

Ỹi = Eh[Y |si , xi ]
Ỹi is called surrogate index (SI) (Athey et al., 2020).
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Imputation of long-term outcome

As in Athey et al. 2020

Assumption (1): unconfoundedness and positivity.

Ai ⊥⊥ (Yi (a), Si (a)) ∀a ∈ A, i ∈ e

0 < ea(x) < 1 ∀a ∈ A, x ∈ X

Assumption (2): surrogacy or mediation.

Ai ⊥⊥ Yi | Si ,Xi , i ∈ e

Assumption (3): comparability.

Yi | Si ,Xi , i ∈ e ∼ Yj | Sj ,Xj , j ∈ h
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Imputation of long-term outcomes

Under assumptions (1)-(3), the treatment effect on surrogate
index Ỹ recovers the treatment effect on Y .

Actually can work with a weaker sign-preserving assumption

We prove that Ỹ can also be used for policy learning: optimal
policy learned on Ỹ recovers the optimal policy learned on Y .
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Surrogates: Evaluation with experiments

Buyse, M., et al. (2011). Leukemia-free survival as a surrogate end point for overall survival in the 
evaluation of maintenance therapy for patients with acute myeloid leukemia in complete remission. 
Haematologica, 96(8), 1106-1112.

Estimated effect on proxy
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Policy learning with doubly-robust scores

Doubly robust scores for each user-action pair (Dudik et al.,
2014; Athey and Wager, 2017; Zhou et al., 2018):

γ̂a(xi ) = µ̂(xi , a) +
Yi − µ̂(xi , a)

ea(xi )
· 1{ai=a}

Binary cost-sensitive classification ( multi-action ):

π∗(xi ) = argmaxπ
1

n

∑

i

(γ̂1(xi )− γ̂0(xi )) · (2π(xi )− 1)

More efficient than outcome regression or causal forest.
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Policy implementation

Implement π∗ via bootstrapped Thompson sampling (Eckles
and Kaptein, 2014;Osband et al., 2015, 2017).

Estimate a π∗b via cost-sensitive classification for each
bootstrap sample b ∈ B, then average them.

π∗(A = a|xi ) = 1
|B|
∑

b 1{π∗
b (A=a|xi )}

Account for non-stationarity and can iterate on future cohorts.
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Two field experiments

First cohort:
• 2018/8, 45K users, 1K treated.
• treatment: $4.99/week for 8 weeks.

Second cohort:
• 2019/7, 95K users, 6K treated.
• treatment: thank you email only, $20 gift card, $5.99/week for

8 weeks, $5.99/4, $4.99/8, $3.99/8.

No overlaps of treated users between two cohorts.
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Treatments
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Procedure

Step (1): implement a behavior/design policy π0 on the first
cohort that balances exploration and exploitation. detail

Step (2): observe surrogates S (1-6 month revenue and
content consumption) and impute 3-year revenues Ỹ (si , xi ) on
the first cohort using historical data. detail

Step (3): learn π∗ with Ỹ and implement it via bootstrapped
Thompson sampling on the second cohort. detail

Step (4): repeat step (2) and (3) to update the optimal policy
after treating each cohort to account for non-stationarity.
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Result: first cohort (survival curve)
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Validation of surrogate index
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Left: The value of optimal policy learned on short-term proxies (1-6
month revenue), they don’t outperform the status quo.

Right: The value of optimal policy learned on surrogate indices
constructed with surrogates from 1-6 months, they outperform the
status quo (except for month 1).
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Validation of surrogate index
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Left: The value difference between optimal policies learned on
surrogate indices and true outcome, they are statistically
indistinguishable.

Right: Comparing surrogate indices constructed using different
variables: content consumption only, short-term revenue only, and
both, there is no significant differences.
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Result: second cohort (survival curve)
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Result: second cohort (optimal policy)

condition percentage

control 23%

thank you email only 25%

gift card < 1%

$5.99/8 weeks 25%

$5.99/4 weeks 27%

$4.99/8 weeks < 1%

$3.99/8 weeks < 1%

Checking for non-stationarity: covariate shift and concept shift
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Conclusion

We combine a surrogate index with policy learning to optimize
targeting for long-term outcomes.

Prove that the approach works under certain assumptions.

Implement in adaptive randomized experiments.

Validate it empirically by targeting discount to digital
subscribers of Boston Globe.

Increases 1.5-year and 3-year revenue by $15 and $40 per user
relative to the status quo in the two cohorts.

3-year total revenue impact sums up to $4-5 million.
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Related work

Applying doubly robust scores based policy evaluation and
learning, more efficient than e.g., outcome model, causal
forest (vs. Hitsch and Misra, 2018; Simester et al., 2019 (a,b))

Using bounded outcome to design a starting policy that’s
better than uniformly at random with minimal assumption

Dynamic policy that responses to changes in the environment
(vs. Athey and Wager, 2017; Zhou et al., 2018; Hitsch and
Misra, 2018; Simester et al., 2019 (a,b))

Learning a policy to optimize long-term outcomes with
surrogate index (vs. Athey et al., 2019)
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Other related work

Methodological:
• Contextual bandit (Langford and Zhang, 2008; Hauser et al.,

2009; Li et al., 2011; Burtini et al, 2015; Schwartz et al., 2017;
Misra et al., 2019)

• Off-policy evaluation and optimization (Dudik et al., 2014; Li
et al., 2011; Athey and Wager, 2017; Hitsch and Misra, 2018;
Simester et al., 2019 (a,b); Zhou et al., 2018)

Substantive:
• churn management (Ascarza et al., 2016; Ascarza et al., 2017;

Ascarza 2018; Godinho de Matos et al., 2018)

back
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Supplementary Materials

26 / 60



Design policy for first cohort

The choice of π0 can encode prior knowledge.

Bounded outcome imposes restrictions on the magnitude of
treatment effect with minimal assumptions (e.g.,
monotonicity: treatment doesn’t increase churn risk).

Y is long-term (e.g., 3 year) churn probability, which is
bounded between 0 and 1.

We first train a classifier churn prediction to predict Y (0) and then
treat users with higher Y (0) with higher probability. simulation

0 < π0(a|Xi ) < 1 (some practical level of positivity).

back
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Result: first cohort (treatment effect)
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Validation of surrogate index
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Average treatment effect on the treated (ATT) on revenue using
surrogates from the first 6 months, blue line is the ATT estimated using
true 1.5-year revenue.
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Learned policy plus exploration
Add exploration with bootstrapped Thompson sampling
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Result: second cohort (treatment effect)
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Proof

Ỹ is valid for policy evaluation:

V (π) = n−1
n∑
i

{π(xi )Yi (1) + (1− π(xi ))Yi (0)}

= n−1
n∑
i

{π(xi )E[
AiYi

e(xi )
] + (1− π(xi ))E[

(1− Ai )Yi

1− e(xi )
]}

= n−1
n∑
i

E[π(xi )
AiYi

e(xi )
+ (1− π(xi ))

(1− Ai )Yi

1− e(xi )
]

= n−1
n∑
i

E[E[π(xi )
AiYi

e(xi )
+ (1− π(xi ))

(1− Ai )Yi

1− e(xi )
|si , xi ]]

= n−1
n∑
i

E[π(xi )
E[Ai |si , xi ]E[Yi |si , xi ]

e(xi )
+ (1− π(xi ))

E[1− Ai |si , xi ]E[Yi |si , xi ]
1− e(xi )

]

= n−1
n∑
i

E[π(xi )
Ai Ỹi

e(xi )
+ (1− π(xi ))

(1− Ai )Ỹi

1− e(xi )
]

back
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Proof

Ỹ is valid for policy learning.

First, Ỹ recovers CATE on Y (Athey et al., 2019).

τ(xi ) = E[Yi (1)− Yi (0)|xi ]

= E[
AiYi

e(xi )
− (1− Ai )Yi

1− e(xi )
|xi ]

= E[E[
AiYi

e(xi )
− (1− Ai )Yi

1− e(xi )
|si , xi ]]

= E[
E[Ai |si , xi ]E[Yi |si , xi ]

e(xi )
− E[1− Ai |si , xi ]E[Yi |si , xi ]

1− e(xi )
|xi ]

= E[
Ai Ỹi

e(xi )
− (1− Ai )Ỹi

1− e(xi )
|xi ]

It follows immediately that policy learned on Ỹ recovers the optimal
policy learned on Y . The two policies always make the same
decisions (and therefore have the same value) as long as the CATE
on Ỹ have the same sign as the CATE on Y .
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Imputing long-term outcome with SI

Y = 3-year revenue

S = {short term (1-6 months) revenue, content consumption}
Use a historical data set from 2015-2018 to estimate 3-year
revenue as a function of S and X: Eh[Y |si , xi ]
Plug in the S and X from first cohort to impute the 3-year
revenue for users in the experiment: Ỹ (si , xi )

Use Ỹ (si , xi ) for policy learning

back
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Efficient policy learning and implementation
Estimate doubly robust scores for each user action pair in the
first cohort via cross-fitting.
Use doubly robust scores to construct label and case weight
and use cost-sensitive classification to learn the optimal policy
on the training set (80/20 split).
Implement the optimal policy by repeating the procedure
above on each bootstrap sample of the training set, and
assigning each user to treatment with probability equal to the
fraction of times that user is treated across all bootstrap
samples (we clip probabilities near 0 and 1 to ensure that
positivity assumption holds).
When estimating π∗ for future cohorts can pool data from the
first two cohorts but weigh them by recency (Russa et al.,
2019). Intuition: apply equal weighting across rounds when
the environment is stable, only use data from the most recent
round if environment is changing fast.

back
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CATE

CATE is the core of policy learning:

maxπV (π) = maxπ n−1
∑

i

Y (xi , π(xi ))

= maxπ n−1
∑

i

{π(xi )Yi (1) + (1− π(xi ))Yi (0)}

= maxπ n−1
∑

i

{π(xi )(Yi (1)− Yi (0)) + Yi (0)}

= maxπ n−1
∑

i

{π(xi )τ(xi ) + Yi (0)}

π∗(xi ) = 1 ⇐⇒ τ(xi ) > 0

back
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Policy evaluation

Example: π0 is a uniform policy, πP only treats users who
subscribed in the last 3 months.

A doubly robust approach to estimating the value of
counterfactual policy πP (Dudik et al., 2014):

V̂DR(πP) =
1

n

∑

i

(
µ̂(xi , πP)+

πP(A = ai |xi )
π0(A = ai |xi )

·(Yi−µ̂(xi , ai ))

)

µ̂(xi , πP) :=
∑

a∈A
πP(A = a|xi )µ̂(xi , a)
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Multi-action policy learning

The doubly robust scores are the same:

γ̂a(xi ) = µ̂(xi , a) +
Yi − µ̂(xi , a)

ea(xi )
· 1{ai=a}

Now the objective function is:

π∗(xi ) = argmaxπ∈Π n−1
∑

i

< γ̂(xi ), π(xi ) >

< · > is the dot product of doubly robust and policy vectors

It can also be reduced to a binary cost-sensitive classification
problem by fitting a classifier for each pair of actions and then
the optimal action is chosen by majority vote

back
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Result: first cohort (benchmark)
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Result: first cohort (value of information)
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Result: first cohort (value of model)
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Result: first cohort (value of model)
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Result: first cohort (policy interpretation)
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Potential and observed outcomes

Potential outcomes:

Yi (a) for a ∈ A (e.g., 0, 1)

We observe Yi = Yi (Ai ). In the special case of a binary action
(i.e. treatment), that is

Yi = AiYi (1) + (1− Ai )Yi (0)
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ATEs with fancier randomization

We might have randomized people to treatment with different
probabilities that depend on their characteristics.

If these probabilities π0 are known and not 0, we can use
estimators that reweight using their inverse

Normalized (Hàjek) estimator

µ̂Hàjek
1 =

1∑
i Ai

N∑

i=1

Yi
Ai

π0(Ai |Xi )

Can estimate τ with, e.g., τ̂Hàjek = µ̂Hàjek
1 − µ̂Hàjek

0 .
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Policies

A policy (or treatment rule, or treatment regime) determines
how units are assigned to treatment.

A homogeneous deterministic policy would assign all units to
the same treatment, so we could write zπ to designate this
treatment.

Deterministic policies where not all units are given the same
treatment assignment. Then we can designate the treatment
that policy π assigns for unit i with zπi or the π(a|Xi ).

Other cases:
• Dynamic treatment regimes, reinforcement learning.
• Stochastic policies that rely only on random samples from data

about units.
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Policy evaluation

What is the mean outcome under some policy π?

µπ = [Yi (zπi )]

If π is stationary and possibly stochastic, it could be useful to
write:

µπ =
∑

z∈Z
[Yi (a)]π(a|Xi )

This also makes clear the homogeneity of the policy for any
units i and j such that Xi = Xj .
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Policy evaluation from a Bernoulli experiment

How can we estimate µπ from experimental data?

For now assume Bernoulli experiment with
Pr(Ai = 1) = Pr(Ai = 0) = 1/2

For boring policy that would assign everyone to treatment:

µ1 = [Yi (1)]

so can estimate this with

µ̂1 =
1∑
i Ai

∑

i

YiAi

This is just the sample mean in treatment.
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Who should be targeted with an intervention?

For each unit (e.g., customer), we observe their characteristics
(i.e., features, covariates, context) Xi ∈ X and can choose an
action a ∈ A
We then observe the outcome (i.e. reward) for that action
Yi (a)

A policy π is a way of making these choices about actions. It
maps from characteristics to actions, i.e., π : X→ ∆(A)

Then targeting is a matter of finding a good (or the best)
policy within some set of (perhaps simple) possible policies π,
i.e.,

π∗ = argmaxπV (π)

where V (π) =π [Yi (Ai )]

We do this using past data, ideally where we’ve randomized
the actions taken in some way
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Policy evaluation from a Bernoulli experiment

For concreteness, consider a policy that assigns treatment
above some threshold on a scalar covariate. That is, units are
treated iff Xi > c .

πc(z |x) = (z = (x > c))

Then to estimate µπc we look at outcomes for units with
Xi > c that were treated and units with Xi ≤ c that weren’t
treated.

µ̂πc =
1∑

i (Ai = (Xi > c))

N∑

i=1

Yi (Ai = (Xi > c))
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Policy evaluation with a design policy

What if units were not assigned to treatment with equal
probabilities, but rather according to a policy π0?

We assume conditional unconfoundedness and positivity, i.e.,
Yi (z)Ai |Xi and 0 < π0(z |Xi ) < 1 for all z ∈ Z and x in the
support of Xi .

Need to account for heterogeneous probabilities of assignment
to different levels of treatment in policy that generated our
data

π0(z |Xi ) is our (for now, exactly known) propensity score.
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Inverse-probability weighted estimators

Normalized (Hàjek) estimator

µ̂Hàjek
π =

1∑
i wπi

N∑

i=1

Yiwπi .

Note: Previous examples have used implicitly used normalized
weights.
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Inverse-probability weighted estimators

Unnormalized (Horvitz–Thompson estimator):

µ̂HTπ = 1
N

∑
i Yi

π(Ai |Xi )
π0(Ai |Xi )

Horvitz–Thompson estimator is the minimum variance
unbiased estimator given our assumptions.
• Consider N = 1. Then µ̂HT

π = Yi
π(Ai |Xi )
π0(Ai |Xi )

.

• π0 [µ̂HT
π ] =π0 [Yi

π(Ai |Xi )
π0(Ai |Xi )

] =π [Yi ].

Nonetheless, the normalized (Hàjek) estimator will often have
lower MSE.
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Policy evaluation

Example with 5 treatments from Kallus (2018).Figure 1: The setting in Ex. 1

(a) X1:n, T1:n (b) µ1(x) (c) ��(x)

In Thm. 1 and Cor. 2, B(W, �; µ) and B(W, �; µ� µ̂) are precisely the conditional bias in

evaluating � for �̂W and �̂W,µ̂, respectively, and 1
n2 W

T�W the conditional variance for both.

In particular, Bt(W, �t; µt) or Bt(W, �t; µt � µ̂t) is the conditional bias in evaluating the effect

on the instances where � assigns t. Note that for any function ft, Bt(W, �t; ft) corresponds to

the discrepancy between the ft(X)-moments of the measure �t,�(A) = 1
n

�n
i=1 �t(Xi)I [Xi � A]

on X and the measure �t,W (A) = 1
n

�n
i=1 Wi�TitI [Xi � A]. The sum B(W, �; f) corresponds

to the sum of moment discrepancies over the components of f = (f1, . . . , fm) between these

measures. The moment discrepancy of interest is that of f = µ or f = µ � µ̂, but neither of

these are known.

Balanced policy evaluation seeks weights W to minimize a combination of imbalance,

given by the worst-case value of B(W, �; f) over functions f , and variance, given by the

norm of weights W T�W for a specified positive semidefinite (PSD) matrix �. This general

approach is in the spirit of that introduced by [20] for the case of causal effect estimation.

Here, we focus on functions f in the unit ball of a direct product of reproducing kernel Hilbert

spaces (RKHS):

�f�p,K1:m,�1:m =

�
m�

t=1

�ft�p
Kt

/�p
t

�1/p

,

where � · �Kt is the norm of the RKHS given by the PSD kernel Kt(·, ·) : X 2 � R, i.e., the

unique completion of span(Kt(x, ·) : x � X ) endowed with �Kt(x, ·), Kt(x
�, ·)� = Kt(x, x�) [see

9

Figure: (a) Observed data with 2-dimensional X and observed treatments
(color). (b) True mean of treatment 1 as a function of X . (c) Policy we
want to evaluate.
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Contribution

Five key features:
• evaluate any counterfactual polices offline
• more efficient learning with doubly robust scores
• use bounded outcome to design a better behavior policy
• adapt to potential changes in the environment
• directly optimized on imputed long-term outcome

Conceptual:
• bounded outcome encodes information on treatment effect
• implement a stochastic optimal policy to continue exploration
• use SI to impute long-term outcome for policy learning

Practial:
• increases 1.5-year and 3-year revenue by $15 and $40 per user
• 3-year total revenue impact sums up to 4-5 millions
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Churn prediction
Train and compare a menu of classification models (logistic
regression, random forest, supporter vector machine, xgboost)

Top performer (xgboost): high overall accuracy (98%),
precision (94%), AUC (94%)

Recall is very low (23%), suggesting that we might be missing
some important signals from the constructed features

Training set:

predicted/actual 0 1

0 35,967 886

1 19 276

Testing set:

predicted/actual 0 1

0 7731 205

1 4 60

back
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Churn prediction

feature relative importance

credit card statusa 100.000
credit card statusi 66.728

last autorenew 39.728
cc expire dt 31.951

last billingchg reasonremovecc 23.667
first billingchg reasonremovecc 18.981

last start tenure 7.919
credit card typeu 6.016

original tenure 5.786
last billingchg 5.252

back
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Behavior policy simulation

back
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Covariate shift

back
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Concept shift

back
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