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Learning to target interventions

m We have some intervention — a discount, an ad campaign, or
a piece of content to recommend

m How should we decide who to target with it?

m We will use randomized experiments to generate data about
for whom it might work.

m A policy and its value:

m: X — AA
E[Yi] == u(xi, 7(xi))

V()= - 3Bl
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Long-term outcomes

m What makes long-term outcomes different?

m When primary outcome of interest is short-term, a policy can
be directly optimized on it before treating the next batch.

m But long-term outcomes are not observed in the short-term.

® Just wait. But can’t learn or take actions in between.
® Optimize a short-term proxy instead. But it might be myopic
and not well aligned with the long-term outcome.
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Empirical context: The Boston Globe

Boston Globe is the largest newspaper in New England.
$6.93/week billed every 4 weeks for a total of $27.72.

How can we retain subscribers and maximize their long-term
revenue by targeting discounts?

Two rounds of experiments on all digital subscribers.

m What we observe for each customer:

® demographics (e.g., zip code)

® account activities (e.g., billing address change, payment
decline, credit card expiration date, complaints)

® content consumption (what articles and when)

® cancellation and revenue
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Our approach

m Use statistical surrogacy to impute the missing long-term
outcomes and optimize the policy on imputed outcomes.

m Implement the optimal policy via bootstrapped Thompson
sampling to account for non-stationarity.!

m Application: Who should | give discount to, and how much, to
maximize total subscription revenue over the next 3 years?

!Add randomness in every round of targeting to never stop exploring.
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Framework

m Imputation of long-term outcome: Y in place of Y.

m Policy learning:

7 = argmax,cn V(r)

m Policy implementation: adapt to potential non-stationarity by
continuing to experiment mj

6/60



Imputation of long-term outcome

m Statistical surrogate: a short-term proxy variable S that if
conditioned on, makes long-term outcome Y independent of
treatment A (Prentice 1989).

m One causal model where this is satisfied: S fully mediates the
treatment effect from A to Y.

m Perhaps more plausible if S is detailed (potentially
high-dimensional). Can find a set of surrogates S that jointly
mediate the treatment effect and learn a surrogate index
(Athey et al., 2020).
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Imputation of long-term outcome

m Suppose we have two datasets: experimental (e) and
historical /observational (h).

In experimental data we observe (x;, aj, S;).

In historical data we observe (x;,s;, y;).

The long-term outcome in the experimental data can be
imputed as:
Yi = En[Y|si, xi]

Y; is called surrogate index (SI) (Athey et al., 2020).
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Imputation of long-term outcome

m As in Athey et al. 2020

m Assumption (1): unconfoundedness and positivity.

Ai 1L (Yi(a),Si(a)) Yac A,ice
O0<ex)<lVaeAxeX

m Assumption (2): surrogacy or mediation.
A LY | Si, X iee
m Assumption (3): comparability.

W’S,‘,X;,I.EGN\/J"SJ',)Q,jeh
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Imputation of long-term outcomes

m Under assumptions (1)-(3), the treatment effect on surrogate
index Y recovers the treatment effect on Y.

m Actually can work with a weaker sign-preserving assumption

= We that Y can also be used for policy learning: optimal
policy learned on Y recovers the optimal policy learned on Y.
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Surrogates: Evaluation with experiments
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Policy learning with doubly-robust scores

m Doubly robust scores for each user-action pair (Dudik et al.,

2014; Athey and Wager, 2017; Zhou et al., 2018):

\/f - /’l(Xl'v a)

Jal) = ilxi, @) + =03

Lfa=a)

m Binary cost-sensitive classification (CHEERD):

7 (x) = argmax, > (3(x) — Ao(x) - (2(x)) 1)

i

m More efficient than outcome regression or causal forest.
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Policy implementation

m Implement 7* via bootstrapped Thompson sampling (Eckles
and Kaptein, 2014;0sband et al., 2015, 2017).

m Estimate a 7, via cost-sensitive classification for each
bootstrap sample b € B, then average them.

_ _ 1
m (A = alxi) = 157 b Limp(A=alx)}
m Account for non-stationarity and can iterate on future cohorts.
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Two field experiments

m First cohort:

® 2018/8, 45K users, 1K treated.
® treatment: $4.99/week for 8 weeks.

m Second cohort:

® 2019/7, 95K users, 6K treated.
® treatment: thank you email only, $20 gift card, $5.99/week for
8 weeks, $5.99/4, $4.99/8, $3.99/8.

m No overlaps of treated users between two cohorts.
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Treatments

The Boston Globe

Thank you.

Dear Jessie,

Thank you for being a loyal Globe.com subscriber. As
a Boston Globe reader, your support allows us to
continue producing award-winning journalism.

To say thank you, we are reducing your subscription
rate to $4.99/week for the next 8 weeks. This
discounted rate will be automatically applied to your
next two invoices.

The Boston Globe

Thank you.

Dear David,

As a thank you for supporting journalism and placing
‘your trust in us, we are reducing your subscription
rate to $5.99/ week for the next four weeks. To claim
this discounted rate, please click the button below and
the discount will be automatically applied to your
subscription.

As a Globe subseriber, you are a critical part of a
community that cares deeply about the issues that
affect not only our region but the world. The Globe is
committed to continuing to spark inspiring and
informing in-depth discussions on the most important
issues that will shape the future of our community. |
urge you to add your voice by commenting on articles
' joining us at community events. Your ongoing
subscription directly fuels this mission and L write
today to let you know that we don't take for granted
‘your decision to support Pulitzer Prize-winning
journalism in New England

Sincerely,

John W. Henry
Publisher

Claim discount by 7/16. Offer expires at midnight on 7/16.
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Procedure

m Step (1): implement a behavior/design policy 7y on the first
cohort that balances exploration and exploitation.

m Step (2): observe surrogates S (1-6 month revenue and
content consumption) and impute 3-year revenues Y(s;, x;) on
the first cohort using historical data.

m Step (3): learn 7* with Y and implement it via bootstrapped
Thompson sampling on the second cohort.

m Step (4): repeat step (2) and (3) to update the optimal policy
after treating each cohort to account for non-stationarity.
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Result: first cohort (survival curve)
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Validation of surrogate index
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m Left: The value of optimal policy learned on short-term proxies (1-6
month revenue), they don't outperform the status quo.

m Right: The value of optimal policy learned on surrogate indices
constructed with surrogates from 1-6 months, they outperform the
status quo (except for month 1).
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Validation of surrogate index
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m Left: The value difference between optimal policies learned on
surrogate indices and true outcome, they are statistically
indistinguishable.

m Right: Comparing surrogate indices constructed using different
variables: content consumption only, short-term revenue only, and
both, there is no significant differences.
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Result: second cohort (survival curve)
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Result: second cohort (optimal policy)

condition percentage
control 23%
thank you email only 25%
gift card < 1%
$5.99/8 weeks 25%
$5.99/4 weeks 27%
$4.99/8 weeks < 1%
$3.99/8 weeks < 1%

m Checking for non-stationarity: and
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Conclusion

m We combine a surrogate index with policy learning to optimize
targeting for long-term outcomes.

m Prove that the approach works under certain assumptions.
m Implement in adaptive randomized experiments.

m Validate it empirically by targeting discount to digital
subscribers of Boston Globe.

m Increases 1.5-year and 3-year revenue by $15 and $40 per user
relative to the status quo in the two cohorts.

m 3-year total revenue impact sums up to $4-5 million.
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Thanks

m Coauthors: Dean Eckles, Paramveer Dhillon, Sinan Aral.
Some personal advertising:

I'm on the academic job market.

General interest: optimizing managerial decisions with causal
inference, machine learning and unstructured data (e.g.,
video, text and network).

Email: jeremy.z.yang@gmail.com

Website: jeremyzyang.github.io

Twitter @jeremyzyang
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Related work

m Applying doubly robust scores based policy evaluation and
learning, more efficient than e.g., outcome model, causal
forest (vs. Hitsch and Misra, 2018; Simester et al., 2019 (a,b))

m Using bounded outcome to design a starting policy that's
better than uniformly at random with minimal assumption

m Dynamic policy that responses to changes in the environment
(vs. Athey and Wager, 2017; Zhou et al., 2018; Hitsch and
Misra, 2018; Simester et al., 2019 (a,b))

m Learning a policy to optimize long-term outcomes with
surrogate index (vs. Athey et al., 2019)
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Other related work

m Methodological:

® Contextual bandit (Langford and Zhang, 2008; Hauser et al.,
2009; Li et al., 2011; Burtini et al, 2015; Schwartz et al., 2017;
Misra et al., 2019)

® Off-policy evaluation and optimization (Dudik et al., 2014; Li
et al., 2011; Athey and Wager, 2017; Hitsch and Misra, 2018;
Simester et al., 2019 (a,b); Zhou et al., 2018)

m Substantive:

® churn management (Ascarza et al., 2016; Ascarza et al., 2017;
Ascarza 2018; Godinho de Matos et al., 2018)
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Supplementary Materials
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Design policy for first cohort

m The choice of my can encode prior knowledge.

m Bounded outcome imposes restrictions on the magnitude of
treatment effect with minimal assumptions (e.g.,
monotonicity: treatment doesn't increase churn risk).

m Y is long-term (e.g., 3 year) churn probability, which is
bounded between 0 and 1.

m We first train a classifier to predict Y(0) and then
treat users with higher Y/(0) with higher probability. CEEEZD

m 0 < mp(a|X;i) < 1 (some practical level of positivity).
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Result: first cohort (treatment effect)

treatment effect on revenue
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Validation of surrogate index

treatment effect on 1.5-year revenue
\

month

Average treatment effect on the treated (ATT) on revenue using
surrogates from the first 6 months, blue line is the ATT estimated using
true 1.5-year revenue.
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Learned policy plus exploration
Add exploration with bootstrapped Thompson sampling
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second cohort (treatment effect)
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Proof

m Y is valid for policy evaluation:

V(m)=n"" Z{ﬂ(X,—)Y,—(l) + (1 —=7(x))Yi(0)}
(1-A)Y

) m(xi))E[ 1—e(x) 1
—1ZE[W(X, (o ))(i::‘(ii-\)/i]
- ZE{E[w(x,-) ( ) +(1- w(x,-»(i - A(X Isi>ill

,1 ZE[W( A |517XI]]E[Y|517X1] (1 W(X[))E[l_Ai|5i7XI']E[YI'|5i7Xi]]

e(x) 1 ()
! Zﬂzlw(x, == nt) S22
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Proof

m Y is valid for policy learning.
m First, Y recovers CATE on Y (Athey et al., 2019).

7(xi) = E[Y;(1) — Yi(0)|x]
_AY (L-A)Y .

N IE[e(x,-) 1—e(x) i

AY:  (1-A)Y:

=Ly~ T ey 1]

) E[A,"S,‘7X,']E[Y;|S,',X,'] E[l — A,‘|S,',X,']E[Y,"S,‘,X,‘] ]
= El e(x) - 1— e(x) bl
_ E[AiYi (1= Ai)Yi|X’_]

e(x,-) 1-— e(x,-)

m [t follows immediately that policy learned on Y recovers the optimal
policy learned on Y. The two policies always make the same
decisions (and therefore have the same value) as long as the CATE
on Y have the same sign as the CATE on Y.
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Imputing long-term outcome with Sl

Y = 3-year revenue

S = {short term (1-6 months) revenue, content consumption}

Use a historical data set from 2015-2018 to estimate 3-year
revenue as a function of S and X: E4[Ysj, xi]

Plug in the S and X from first cohort to impute the 3-year
revenue for users in the experiment: Y'(s;, x;)

Use Y (s, x;) for policy learning
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Efficient policy learning and implementation

m Estimate doubly robust scores for each user action pair in the
first cohort via cross-fitting.

m Use doubly robust scores to construct label and case weight
and use cost-sensitive classification to learn the optimal policy
on the training set (80/20 split).

m Implement the optimal policy by repeating the procedure
above on each bootstrap sample of the training set, and
assigning each user to treatment with probability equal to the
fraction of times that user is treated across all bootstrap
samples (we clip probabilities near 0 and 1 to ensure that
positivity assumption holds).

m When estimating 7* for future cohorts can pool data from the
first two cohorts but weigh them by recency (Russa et al.,
2019). Intuition: apply equal weighting across rounds when
the environment is stable, only use data from the most recent
round if environment is changing fast.
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CATE

m CATE is the core of policy learning:

max, V(7)) = max, n~! Z Y (xi,
= max; n -1 Z{ﬂ' xi)Yi( (1 —7(x))Yi(0)}
= max, n ! Z{ﬂ' x;)(Yi(1) = Yi(0)) + Y;(0)}

= max, n* Z{W(Xf)T(Xi) + Yi(0)}

mr(x)=1 < 7(x;) >0
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Policy evaluation

m Example: mg is a uniform policy, wp only treats users who
subscribed in the last 3 months.

m A doubly robust approach to estimating the value of
counterfactual policy mp (Dudik et al., 2014):

Vor(mp) = %Z (ﬁ(Xi,WP)+W'(Yi—ﬂ(Xi, 3i))>
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Multi-action policy learning

m The doubly robust scores are the same:

\/i - /Il(Xl'v a)

Talxi) = A6, ) + =0 S

Lfa=a)

m Now the objective function is:

7*(x;) = argmax,cn n L Z < A(xi), m(xi) >

1
< - > is the dot product of doubly robust and policy vectors

m It can also be reduced to a binary cost-sensitive classification
problem by fitting a classifier for each pair of actions and then
the optimal action is chosen by majority vote
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Result: first cohort (value of model)
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Result: first cohort (value of model)
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Result: first cohort (policy interpretation)
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Potential and observed outcomes

m Potential outcomes:
Yi(a) for ac A (eg., 0, 1)

m We observe Y; = Yj(A;). In the special case of a binary action
(i.e. treatment), that is

Yi=AiYi(1) + (1 - A)Yi(0)
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ATEs with fancier randomization

m We might have randomized people to treatment with different
probabilities that depend on their characteristics.

m If these probabilities mp are known and not 0, we can use
estimators that reweight using their inverse

m Normalized (Hajek) estimator

1 & A
~Hajek _ v, i
= > i Ai ; "mo(AilX;)

. . ~Hajek __ ~Hajek ~Hajek
m Can estimate 7 with, e.g., 773 = [i; — [y
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Policies

m A policy (or treatment rule, or treatment regime) determines
how units are assigned to treatment.

m A homogeneous deterministic policy would assign all units to
the same treatment, so we could write z; to designate this
treatment.

m Deterministic policies where not all units are given the same
treatment assignment. Then we can designate the treatment
that policy 7 assigns for unit i with z; or the w(alX;).

m Other cases:

® Dynamic treatment regimes, reinforcement learning.
® Stochastic policies that rely only on random samples from data
about units.
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Policy evaluation

m What is the mean outcome under some policy 77

pr = [Yi(2ri)]

m If 7 is stationary and possibly stochastic, it could be useful to

write:
e = S [Vi(@l(alX;)

zEZL

This also makes clear the homogeneity of the policy for any
units / and j such that X; = Xj.
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Policy evaluation from a Bernoulli experiment

How can we estimate p, from experimental data?

m For now assume Bernoulli experiment with
Pr(Ai=1)=Pr(A;=0)=1/2
m For boring policy that would assign everyone to treatment:

p = [Yi(1)]

so can estimate this with

R 1
fi1 = S A Zi:YiAi

This is just the sample mean in treatment.
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Who should be targeted with an intervention?

For each unit (e.g., customer), we observe their characteristics
(i.e., features, covariates, context) X; € X and can choose an
action a € A

We then observe the outcome (i.e. reward) for that action
Yi(a)

A policy 7 is a way of making these choices about actions. It
maps from characteristics to actions, i.e., 7 : X — A(A)

Then targeting is a matter of finding a good (or the best)
policy within some set of (perhaps simple) possible policies T,

ie.,
7w = argmax, V()

where V(7)) =, [Yi(Ai)]
We do this using past data, ideally where we've randomized
the actions taken in some way
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Policy evaluation from a Bernoulli experiment

m For concreteness, consider a policy that assigns treatment
above some threshold on a scalar covariate. That is, units are
treated iff X; > c.

me(z|x) = (2 = (x> ¢))

m Then to estimate ;. we look at outcomes for units with
X; > c that were treated and units with X; < ¢ that weren't
treated.

1 N

e = A= (s ) 2 = )

i=
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Policy evaluation with a design policy

m What if units were not assigned to treatment with equal
probabilities, but rather according to a policy m?

m We assume conditional unconfoundedness and positivity, i.e.,
Yi(z)Ai| Xi and 0 < mo(z|X;) < 1 for all z € Z and x in the
support of X;.

m Need to account for heterogeneous probabilities of assignment
to different levels of treatment in policy that generated our
data

m 7o(z|X;) is our (for now, exactly known) propensity score.
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Inverse-probability weighted estimators

m Normalized (Hajek) estimator
~Hajek 1
¥ = = D Vi

m Note: Previous examples have used implicitly used normalized
weights.
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Inverse-probability weighted estimators

L] Unnormalized (Horvitz—Thompson estimator):

N (A | Xi
AHT = 1 Z im)((A‘\x))

m Horvitz—Thompson estimator is the minimum variance
unbiased estimator given our assumptions.

® Consider N = 1. Then afT = W;((%X;‘\);;))'

ﬂo[NwT] ) [Y, ﬂoi‘f;( ] =x [Y]
m Nonetheless, the normalized (Hajek) estimator will often have
lower MSE.
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Policy evaluation

Example with 5 treatments from Kallus (2018).
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(a) X1, Tin (b) ()

Figure: (a) Observed data with 2-dimensional X and observed treatments

(color). (b) True mean of treatment 1 as a function of X. (c) Policy we
want to evaluate.
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Contribution

m Five key features:

evaluate any counterfactual polices offline

more efficient learning with doubly robust scores

use bounded outcome to design a better behavior policy
adapt to potential changes in the environment

directly optimized on imputed long-term outcome

m Conceptual:

® bounded outcome encodes information on treatment effect
® implement a stochastic optimal policy to continue exploration
® use Sl to impute long-term outcome for policy learning

m Practial:

® increases 1.5-year and 3-year revenue by $15 and $40 per user
® 3-year total revenue impact sums up to 4-5 millions
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Churn

prediction

Train and compare a menu of classification models (logistic
regression, random forest, supporter vector machine, xgboost)
Top performer (xgboost): high overall accuracy (98%),
precision (94%), AUC (94%)

Recall is very low (23%), suggesting that we might be missing
some important signals from the constructed features

Training set:
predicted /actual 0 1
0 35,967 | 886
1 19 276
Testing set:
predicted /actual | 0 1
0 7731 | 205
1 4 60
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Churn prediction

feature relative importance
credit_card _statusa 100.000
credit_card_statusi 66.728
last_autorenew 39.728
cc_expire_dt 31.951
last_billingchg_reasonremovecc 23.667
first_billingchg_reasonremovecc 18.981
last_start_tenure 7.919
credit_card_typeu 6.016
original_tenure 5.786
last_billingchg 5.252
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Behavior policy simulation
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Covariate shift
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Concept shift
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